Актуальность светодиодного освещения в 2020 году: экономичность, плюсы и минусы
Содержание:
- Последовательное соединение светодиодов
- smd 5630 и 5730
- Особенности SMD-светодиодов
- Виды и характеристики светодиодов.
- Получение светодиода определенного цвета
- Интересные факты.
- Устройство светодиодных ламп для цепей переменного тока напряжением 220В
- Светодиод: устройство.
- Принцип работы и характеристики
- Схемы подключения светодиодов – как все правильно выполнить
- Принцип работы и устройство световых диодов
- Декоративные варианты светодиодного освещения
- Характеристики светодиодов
- Основные характеристики
- Какие виды светодиодов существуют и где они применяются
- Что такое светодиодная лента
- Как узнать какой светодиод стоит в лампе
- Рекомендации по проверке лампы при покупке
- Сколько вольт имеет прямое напряжение светодиода
- Какими бывают
- Схемы подключения led лент
Последовательное соединение светодиодов
Часто несколько светодиодов подключают последовательно к одному источнику напряжения. При последовательном соединении одинаковых светодиодов их общий ток потребления равняется рабочему току одного светодиода, а общее напряжение равно сумме напряжений падения всех светодиодов в цепи.
Поэтому, в данном случае, нам достаточно использовать один резистор для всей последовательной цепочки светодиодов.
Пример расчета сопротивления резистора при последовательном подключении.
В этом примере два светодиода соединены последовательно. Один красный светодиод с напряжением 2В и один ультрафиолетовый светодиод с напряжением 4,5В. Допустим, оба имеют номинальную силу тока 30 мА.
Из правила Кирхгофа следует, что сумма падений напряжения во всей цепи равна напряжению источника питания. Поэтому на резисторе напряжение должно быть равно напряжению источника питания минус сумма падения напряжений на светодиодах.
Используя закон Ома, вычисляем значение сопротивления ограничительного резистора:
Резистор должен иметь значение не менее 183,3 Ом.
Обратите внимание, что после вычитания падения напряжений у нас осталось еще 5,5 вольт. Это дает возможность подключить еще один светодиод (конечно же, предварительно пересчитав сопротивление резистора)
smd 5630 и 5730
smd 5630 представляет собой однокристальный мощный прибор (см. таблицу выше), способный создать световой поток до 57 люмен. Благодаря встроенной защите, собранной на двух стабисторах, прибор в состоянии выдерживать импульсный ток до 400 мА и переполюсовку. Светодиод имеет 4 вывода, но в работе кристалла участвуют только два. Оставшиеся два и металлическая подложка используются для лучшего теплоотвода. Цвет свечения светодиода – белый разной цветовой температуры.
Приборы 5730 могут быть как одно, так и двухкристальными. Первые имеют сходные с 5630 характеристики, вторые вдвое мощнее (1 Вт) и в состоянии создавать световой поток до 158 лм.
Оба типа приборов излучают белый свет различной цветовой температуры и могут использоваться для изготовления мощных светодиодных лент, ламп, прожекторов.
Автомобильная лампа на 5630 и стоваттный прожектор на 5730
Более подробную информацию по приборам smd 5630 ты можешь найти здесь, а по smd 5730 – тут.
Особенности SMD-светодиодов
Основное визуально заметное отличие smd светодиодов от обычных состоит в конструкции их корпуса:
Если обычный диод имеет достаточно длинные выводы для монтажа через отверстия в плате, то их smd аналоги имеют лишь небольшие контактные площадки (планарные выводы) и монтируются прямо на плату.
Монтаж светодиода обычным способом (слева) и методом поверхностного монтажа
Такой метод сборки называется поверхностным монтажом, отсюда и название светодиодов: smd (англ. Surface Mount Device – прибор для поверхностного монтажа). Такой монтаж наиболее прост, и его можно поручить роботам.
Кроме того, стал возможен эффективный отвод тепла от кристалла благодаря очень коротким, но относительно массивным выводам и тому, что прибор практически лежит на плате. Ведь несмотря на свою экономичность, сверхъяркие диоды в процессе работы нагреваются. Эта особенность конструкции позволила изготавливать очень миниатюрные, но мощные smd светодиоды, требующие хорошего отвода тепла.
Сегодня мировая промышленность выпускает множество типов smd светодиодов, отличающихся друг от друга как габаритами, так и электрическими параметрами.
Виды и характеристики светодиодов.
Светоизлучающие диоды различают по конструкции корпуса:
- DIP – маломощные индикаторные цилиндрические элементы. Востребованы для подсветок экранов, индикации, световых гирлянд.
- «Пиранья» — четырехконтактный DIP. Они крепче держатся на своем месте и меньше греются. Востребованы в автомобильной промышленности для подсветок.
- SMD – внешне выглядит, как параллелепипед. За счет своей надежности и универсальности востребованы во многих отраслях светотехнической промышленности.
- PCB Star светодиоды. Разновидность SMD.
- СОВ – плоский SMD. Новейший тип.
Независимо от исполнения корпуса выделяют светодиоды:
- Двухцветные. Они излучают одновременно два цвета. Обладают тремя контактами, один из которых общий.
- Полноцветные RGB (красный-зеленый-синий). Изготавливаются из трех полупроводниковых кристаллов под общей линзой, обладают четырьмя электродами. По одному выводу для каждого полупроводникового элемента и один общий вывод. В SMD у прибора будет шесть выводов.
Пропорциональное смешение цветов дает всевозможные оттенки света. Например, при включении на 100% красного и зеленого получится желтый.
- Адресные светодиоды − разновидность полноцветных. Отличаются от обычных RGB тем, что включаются по собственному индивидуальному коду. Востребован в лентах, где на адресном светодиоде можно задать неповторяющийся цветовой оттенок. При этом led-диод обладает собственным адресом, на который поступают команды от специального управляющего драйвера. Управление цветами происходит через микрочипы, которые встраиваются рядом с адресными светодиодами.
- Сверхмощные (сверхяркие) светодиоды – элементы мощностью выше 1 Вт с силой тока от 300 мА. (Мощность обычных светодиодов измеряется чаще всего в милливаттах). Такие устройства светят очень ярким светом. Используются в фонариках, фарах, прожекторах и т.п.
Также led-элементы подразделяются на:
- Индикаторные — маломощные.
- Осветительные — приборы большой мощности.
- Инфракрасные – излучают невидимый человеческому глазу инфракрасный спектр.
Инфракрасные диоды. Благодаря специально подобранным материалам проводников они испускают невидимые глазу инфракрасные лучи. Они безвредны для живых существ, но заметны для электронных систем регистрации. Востребованы во многих технических устройствах и станках во всевозможных отраслях промышленности.
Индикаторные led-диоды. Выступают в роли индикаторов для техники, подсветок дисплеев и т.п. Их делят по типу используемых полупроводников на:
- двойные – светят зеленым и оранжевым;
- тройные – светят желтым и оранжевым;
- тройные – светят красным и желто-зеленым.
Независимо от вида светодиоды характеризуются некоторыми параметрами.
Цвет излучения. Обусловлен химическим составом полупроводников. Некоторые вещества и соответствующие им цвета обозначены в таблице.
Яркость. Она пропорциональна силе тока, текущей сквозь элемент. Среди led-диоды, которые светят белым светом, выделяют яркие (20-25 милликандел) и сверхяркие (свыше 20 тысяч милликандел).
Сила тока. Светодиоды весьма чувствительны к силе тока. При превышении ее значения выше номинального led может перегореть. Поэтому не рекомендуется превышать максимальный прямой ток элемента. Точные значения для конкретного светодиода приводятся в техническом описании.
Падение напряжения. Характеризует допустимую разницу между величинами входного и выходящего напряжения. У значения напряжения для светодиодов есть максимальное значение, превышение которого приведет к поломке led. Значения указываются в техническом описании.
Полярность. Поскольку ток в светодиоде течет только от p -слоя к n -слою, для предотвращения поломок стоит полярность. Обычно ее определяют по внешнему виду, маркировке или особым пометкам на корпусе. (Подробнее смотрите в статье «определение полярности»). Также узнать полярность можно из технической документации.
Угол рассеивания света. Определяется формой линзы, конструкцией кристалла и от используемых для изготовления кристалла веществ. Может меняться от 15 до 180 градусов.
Получение светодиода определенного цвета
Для получения светодиода того или иного цвета используется три технологии – покрытие люминофором, использование RGB светодиодов и применение разных полупроводниковых материалов.
Покрытие люминофором
Люминофором называется вещество, которое может преобразовать поглощаемую энергию в свет. Получение светодиодов путем нанесения люминофора на поверхность имеет свои преимущества:
- простота конструкции;
- низкая стоимость производства;
- экономия.
К недостаткам относятся:
- снижение светоотдачи из-за потери световой энергии;
- влияние на цветовую температуру;
- быстрее стареет при эксплуатации.
Люминофор используется в белых светодиодах. С помощью люминофорного покрытия создаются диоды с различной цветовой температурой.
RGB-технология
Смешивание цветов по RGB технологии также помогает получить светодиоды различного спектра (обычно используются для белого). На матрице устанавливаются 3 монокристалла, каждый из них дает свой спектр RGB. Путем конструирования оптической системы цвета смешиваются и дают нужный оттенок.
Преимущества:
- возможность поочередного включения того или иного цвета вручную или автоматически;
- можно вызывать разные оттенки, меняющиеся по времени;
- создание эффектных осветительных конструкций для рекламы и дизайна.
Недостатки:
- неравномерность светового пятна;
- неравномерность нагрева и отвода тепла.
Отрицательные качества вызваны расположением кристаллов полупроводника на поверхности. Из-за этого качественно организовать RGB модель сложно.
Применение различных примесей и полупроводников
Работа светодиода напрямую зависит от материала, из которого он выполнен. Использование полупроводников с различной шириной запрещенной зоны можно добиться нужного света от диода. От ширины запрещенной зоны зависит длина волны.
Для получения приборов в инфракрасном и красном цветовом спектре используются твердые растворы на основе арсенида галлия. Оранжевые, желтые и зеленые цвета получаются при помощи фосфида галлия. Синие, фиолетовые и ультрафиолетовые изготавливаются на основе нитрида галлия.
Интересные факты.
Светодиодная лента.
Получение белого цвета. Есть три варианта. Первый – по технологии RGB. Включение всех трех цветов на 100% дает белый цвет. Во втором случае на линзу наносят три люминофора: голубой, красный и зеленый. Третий вариант заключается в нанесении красного и зеленого люминофора на оптическую систему голубого светодиода.
Работа при повышенных температурах. С ростом температуры в области p-n-перехода уменьшается яркость свечения. Причем у красных и желтых падение яркости больше, чем у синих и зеленых. Поэтому нужно использовать хороший теплоотвод и не допускать эксплуатации led при повышенных температурах.
Как готовят полупроводники? В основном по технологии металлоорганической эпитаксии в атмосфере особо чистых газов. Выращиваются пленки толщиной от ангстремов до микрон. Разные слои легируются примесями, которые дадут слою высокую концентрацию электронов или дырок, то есть сформируют n или p структуру полупроводника. Зачем пленки травят, создают контакты к n и p слоям и делят на чипы нужных размеров.
Чем хороша СОВ-технология? Тем, что кристаллы монтируются на металлическую подложку, которая одновременно выполняет функции радиатора. Таким образом получают отличный теплоотвод непосредственно от полупроводникового кристалла. Дополнительно можно получить разную форму светодиода, разную гибкость и и.п.
Устройство светодиодных ламп для цепей переменного тока напряжением 220В
Светодиодные лампочки состоят из следующих компонентов:
- Цоколя (Е27, Е14, Е40 и так далее) для вкручивания в патрон светильника, бра или люстры;
- Диэлектрической прокладки между цоколем и корпусом;
- Драйвера, на котором собрана схема для преобразования переменного напряжения в постоянного необходимой величины;
- Радиатора, который служит для отвода тепла от светодиодов;
- Печатной платы, на которую впаиваются светодиоды (типоразмеров SMD5050, SMD3528 и так далее);
- Резисторов (чипы) для защиты светодиодов от пульсирующего тока;
- Светорассеивателя для создания равномерного светового потока.
Светодиод: устройство.
Основа светодиода – полупроводниковый кристалл. Кристалл размещается на металлическое основание катод, который также является отражателем.
Кристалл соединяется тонкой проволокой с анодным выводом. Вся конструкция помещается в корпус колбу нужной формы, верхняя часть колбы состоит из рассеивающей или собирающей линзы. От формы линзы зависит угол рассеивания светового потока, чем более плоская линза, тем шире угол рассеивания и наоборот, чем выпуклей линза, тем уже световой поток.
Для изготовления кристалла светодиода могут, используются такие полупроводниковые материалы как арсенид галлия, алюминия галлия арсенид, галлия фосфид, галлия арсенид-фосфид, кремний и пр.
В зависимости от материала, из которого сделан кристалл, светодиод может излучать заданный спектр свечения.
Все светодиоды можно поделить на два основных типа:
Индикаторные – маломощные светодиоды используются как индикаторы в различных приборах (см. рис. сверху).
Осветительные – более мощные светодиоды, используются в осветительных приборах.
Типы осветительных диодов:
- SMD.
- HP – высокой яркости.
- HP – высокой мощности.
Принцип работы и характеристики
Новых принципов в основу работы COB-светодиодов не положено. Все тот же p-n переход из арсенид-галлия, фосфида индия или других материалов. Та же рекомбинация основных зарядов с излучением светового кванта при приложении прямого напряжения. Тот же монохроматический свет с узким спектром. Те же принципы получения недоступных цветов — при подаче питания излучение светодиодов (в оптическом диапазоне или УФ) инициирует свечение люминофора. Этот известный способ позволяет получить цвета, которых нельзя достичь при непосредственном свечении полупроводниковых переходов. Nакже никуда не делась проблема отведения тепла. Новизна элементов – только в технологии производства, позволяющей вывести светоизлучающие приборы на новый потребительский уровень.
Управление
Управление COB-светодиодом сводится к коммутации питающего напряжения, и в этом плане принципиальных отличий от обычных приборов нет. Включать и выключать такой элемент можно:
- ручным выключателем на соответствующее напряжение;
- электромагнитным реле или пускателем;
- электронным ключом (транзистор, тиристор).
Надо только учитывать, что мощность такого светодиода может достигать 100 Вт, а рабочее напряжение – 220 В. Коммутационный элемент должен иметь соответствующие параметры.
Схемы подключения светодиодов – как все правильно выполнить
Подобные элементы можно подключить двумя способами – последовательно и параллельно. При этом нельзя забывать, что световой диод должен быть расположен правильно. В противном случае схема работать не будет. В обычных элементах с цилиндрической формой это можно определить так: на катоде (-) виден флажок, он немного крупнее анода (+).
Такова схема последовательного подключения световых диодов
Как рассчитать сопротивление светодиода
Расчет сопротивления светового диода очень важен. Иначе элемент просто сгорит, не выдержав величины тока сети.
Разберемся, как рассчитать сопротивление для светодиода.
Сделать это можно по формуле:
R = (VS – VL) / I,где
- VS–напряжение питания;
- VL –номинальное напряжение для светодиода;
- I – ток светодиода (обычно это 0.02 А, что равно 20 мА).
При желании возможно все. Схема довольно проста – используем блок питания от сломанного мобильного телефона или любой другой. Главное, чтобы в нем был выпрямитель
Важно не переусердствовать с нагрузкой (с численностью диодов), иначе есть риск сжечь блок питания. Стандартное зарядное устройство вполне выдержит 6-12 элементов
Можно смонтировать цветную подсветку для клавиатуры компьютера, взяв по 2 синих, белых, красных, зеленых и желтых элемента. Получается довольно красиво.
При желании возможно все. Схема довольно проста – используем блок питания от сломанного мобильного телефона или любой другой. Главное, чтобы в нем был выпрямитель
Важно не переусердствовать с нагрузкой (с численностью диодов), иначе есть риск сжечь блок питания. Стандартное зарядное устройство вполне выдержит 6-12 элементов
Можно смонтировать цветную подсветку для клавиатуры компьютера, взяв по 2 синих, белых, красных, зеленых и желтых элемента. Получается довольно красиво.
Полезная информация! Напряжение, которое выдает блок питания равно 3.7 В. Это значит, что диоды нужно соединить последовательно скоммутированными парами параллельно.
Параллельное и последовательное соединение: как они выполняются
По законам физики и электротехники при параллельном соединении напряжение распределяется равномерно по всем потребителям, оставаясь неизменным на каждом из них. При последовательном монтаже поток делится и на каждом из потребителей оно становится кратным их количеству. Иными словами если взять 8 световых диодов, соединенных последовательно, они будут нормально работать от 12 В. Если же из подключить параллельно – они сгорят.
Параллельно подключенные последовательные тройки световых диодов
Подключение световых диодов на 12 В как самый оптимальный вариант
Любая светодиодная лента рассчитана на подключение к стабилизатору, выдающему 12 или 24 В. На сегодняшний день на прилавках российских магазинов представлен огромный ассортимент изделий различных производителей с этими параметрами. Но все же преобладают ленты и контроллеры именно 12 В. Это напряжение более безопасно для человека, да и стоимость таких приборов более низка. О самостоятельном подключении к сети 12 В говорилось чуть выше, ну а с подключением к контроллеру проблем возникнуть не должно – к ним прилагается схема, с которой разберется даже школьник.
Идеальная подсветка потолка при помощи светодиодной ленты
Принцип работы и устройство световых диодов
Светодиоды отличает от привычных осветительных приборов отсутствие в нем нити накала, хрупкой колбы и газа в ней. Это принципиально отличный от них элемент. Говоря научным языком, свечение создается за счет наличия в нем материалов р- и n-типа. Первые накапливают положительный заряд, а вторые – отрицательный. Материалы р-типа накапливают в себе электроны, в то время, как в n-типе образуются дырки (места, где электроны отсутствуют). В момент появления на контактах электрического заряда они устремляются к р-n-переходу, где каждый электрон инжектируется именно в р-тип. Со стороны обратного, отрицательного контакта n-типа в результате подобного движения и возникает свечение. Оно обусловлено выделением фотонов. При этом не все фотоны излучают видимый человеческим глазом свет. Сила, которая заставляет двигаться электроны, называется током светодиода.
Эта информация ни к чему обычному обывателю. Достаточно знать, что светодиод имеет прочный корпус и контакты, которых может быть от 2-х до 4-х, а также то, что каждый светодиод имеет свое номинальное напряжение, необходимое для свечения.
Устройство светового диода с пояснениями
Полезно знать! Подключение производится всегда в одинаковом порядке. Это значит, что если к контакту «-» на элементе подключить «+», то свечения не будет – материалы р-типа просто не смогут зарядиться, а значит не будет и движения к переходу.
Декоративные варианты светодиодного освещения
Декоративная подсветка придает законченность интерьеру, некую изюминку.
Один из способов сделать акцент на определенном предмете – подсветить его направленным световым лучом.
Световой акцент на картины
Напольная и потолочная подсветка визуально расширят пространство. Такой же цели служат миниатюрные светильники и светодиодные ленты: маленьким комнатам они придадут дополнительный объем.
Подсветка пола и потолка
Разноцветный свет сделает акцент на нишах и полках.
Подсветка ниш
Удобно зонировать пространство при помощи разноцветной потолочной подсветки.
Разноцветное зонирование
Лампы красиво подчеркнут потолочные балки, колонны и другие выступающие части стен.
Подсветка потолочной балки
Широко применяются светодиодные ретро-лампы. Светодиоды дали второе дыхание лампам Эдисона
LED лампы Эдисона
Удобно использовать для уличного украшения домов и городов.
Наружная иллюминация
Характеристики светодиодов
Светодиоды описываются множеством параметров. Важнейшие из них:
- сила света и энергетическая эффективность – Лм и Лм/Вт;
- угол расхождения светового потока по уровням 0,5 или 0,7, градусы – у обычных от 120 до 140 град., у индикаторных моделей – от 15 до 45 град.;
- мощность, потребляемая при работе, Вт – малая – до 0,5, средняя – 0,5-3, большая – более 3;
- рабочий ток через диод, мА или А;
- цвет или оттенок белого света, цветовая температура, градусы Кельвина, К – от 2000-2500 К – теплый белый и до 6500-9500 К – белый холодный.
Есть и другие характеристики, но они используются реже. Например, вольт-амперная характеристика, ВАХ светодиода – кривая зависимости тока через переход от приложенного к нему рабочего напряжения. Применяется при электрических расчетах режима работы светодиода.
Размеры
Размеры светодиода определяются габаритами его корпуса. Для корпусов SMD – длина, ширина, толщина. Первые две величины заложены в обозначении, например, SMD2835, где две пары цифр – это 2,8 мм – ширина и 3,5 мм – длина. Толщину корпуса нужно брать из описания или паспорта на диод.
Размеры SMD3528 и SMD2835. Справа внизу серый уголок – ключ, обозначающий катод.
Для цилиндрических DIP-диодов важные характеристики – диаметр корпуса и его высота с линзой. При этом нужно учесть длину проволочных выводов и рекомендации производителя по их изгибу перед монтажом.
Длина волны
Такая характеристика светодиодов, как длина волны используется очень редко. Чаще называют цвет свечения.
Оттенок цвета | Длина волны, нм |
---|---|
Инфракрасный (невидимый) | 760-880 |
красный | 620-760 |
оранжевый | 585-620 |
желтый | 575-585 |
желто-зеленый | 555-575 |
зеленый | 510-555 |
голубой | 480-510 |
синий | 450-480 |
фиолетовый | 390-450 |
Ультрафиолетовый (невидимый) | 10-390 |
Длина волны свечения диода измеряется в нанометрах – нм. В паспортных данных изделия она указывается не всегда.
Основные характеристики
При покупке светодиодов необходимо оценить его важнейшие параметры. К ним относится величина номинала тока, напряжения, вольтамперная характеристика и другие.
Вольтамперная характеристика
Светодиод на схеме функционирует, если ток пропускают в прямом направлении. Однако вольтамперная характеристика в этом направлении нелинейная. То есть, чтобы полупроводник начал проводить ток, последний должен достичь определенного порогового напряжения.
Эта характеристика определяется материалом прибора. ВАХ позволяет только подобрать токоограничительный резистор и в точности рассчитать, какое напряжение нужно приложить к кристаллу.
Прямой номинальный ток и падение напряжения
Прямой номинальный ток – это рабочий ток, при котором светодиод не перегорит, p-n-переход не будет пробит, а прибор будет нормально работать.
Указывают в паспорте и пиковый ток – максимальный, который прибор может проводить только импульсами.
Номинальный ток светодиода вызывает падение напряжения на p-n-переходе. Величина зависит от состава полупроводника, длины волны. Так, оранжевый светодиод излучает при подаче напряжения от 2,03 до 2,1 вольт, а белый – при 3,5 вольт.
Максимальное обратное
Вольтаж, при котором происходит пробой кристалла. В среднем обратный максимум составляет 5 В. Для COB величина больше, а для инфракрасных индикаторов всего 1–2 В.
Световой поток
Сила света или интенсивность в заданном направлении источника. Чем меньше угол рассеивания, тем больше сила света при одинаковом световом потоке.
Показатели измеряются при температуре +25°С. Выражается обычно в люменах.
Угол рассеивания
Параметр изменяется от 15 до 180 градусов, а в отдельных моделях составляет даже 5 градусов. Чем шире угол излучения, тем более рассеянный свет генерирует прибор. Но обычно светодиод оснащают фокусирующей линзой, поэтому яркость света неодинаковая по углу рассеяния.
Длина волны и цветовая температура
Показатель указывает на характер излучения. Длина волны инфракрасного излучения составляет более 760 нм, видимого желтого – от 560 до 590 нм, ультрафиолетового – менее 400 нм.
Цветовая температура обычно указывается в белых светодиодах. Она точно определяет оттенков белого, например, холодный белый имеет температуру в 6000 К, дневной – 4500 К.
Световая отдача
Характеристика осветительных светодиодов, которая определяет, сколько люменов генерирует светильник при определенной мощности – в 1 Вт. В среднем для светодиодов это составляет 100 Лм/Вт. Появились модели, в которых этот показатель выше, чем у люминесцентных и достигает 150 и более Лм/Вт.
Какие виды светодиодов существуют и где они применяются
Светодиоды оптического диапазона применяются в качестве элементов индикации и в качестве осветительных приборов. Для каждой специализации существуют свои требования.
Индикаторные светодиоды
Задача индикаторного светодиода – показать состояние прибора (наличие питания, аварийный сигнал, срабатывание датчика и т.п.). В этой сфере широко применяются LED со свечением p-n перехода. Приборы с люминофором применять не запрещено, но особого смысла нет. Здесь яркость свечения не на первом месте. В приоритете контрастность и широкий угол обзора. На панелях приборов применяют выводные светодиоды (true hole), на платах – выводные и SMD.
Осветительные светодиоды
Для освещения, наоборот, в основном применяют элементы с люминофором. Это позволяет получить достаточный световой поток и цвета, близкие к естественным. Выводные СД из этой области практически выдавлены SMD-элементами. Широкое применение находят COB-светодиоды.
В отдельную категорию можно выделить приборы, предназначенные для передачи сигналов в оптическом или ИК-диапазоне. Например, для пультов дистанционного управления бытовой аппаратурой или для охранных устройств. А элементы УФ-диапазона могут использоваться для компактных источников ультрафиолета (детекторы валют, биологических материалов и т.д.).
Что такое светодиодная лента
Светодиодная лента (СДЛ) – это светоизлучающая электрическая конструкция в виде гибкой печатной платы (ленты) с равномерно нанесенными на неё источниками света – светодиодами (LED) и ограничителями электрического тока – резисторами (сопротивлениями).
Пример СДЛ
Глоссарий:
LED элемент, СД – светодиод.
Резистор – элемент электрической схемы, ограничивающий рабочий электрический ток.
Диэлектрик – материал не проводящий электрический ток.
RGB контроллер – устройство управления RGB лентой.
Микросхема – миниатюрное электронное устройство, позволяющее передавать и генерировать сигналы управления.
АКБ – аккумуляторная батарея.
БП – блок питания
SMD – светодиодный прибор, устанавливаемый на поверхность гибкой платы.
Гибкая плата – основание ленты, на которую наносятся led элементы.
Драйвер – устройство, источник рабочего электрического тока для светодиодной ленты.
Как узнать какой светодиод стоит в лампе
Самый простой вариант – если лампа полностью исправна. В этом случае надо просто измерить падение напряжения на любом из элементов. Если при подаче питания один или несколько элементов не светят (или все), надо идти другим путем.
Если лампа построена по схеме с драйвером, то на драйвере указано выходное напряжение в виде верхнего и нижнего пределов. Это связано с тем, что драйвер стабилизирует ток. Для этого ему надо изменять напряжение в определенных границах. Фактическое напряжение придется измерить мультиметром и убедиться, что оно в норме. Далее визуально (по дорожкам печатной платы) определить количество параллельных цепочек светодиодов в матрице и количество элементов в цепочке. Напряжение драйвера нужно разделить на число последовательно соединенных элементов. Если напряжение на драйвере не обозначено, то его можно лишь замерить по факту.
Драйвер на рабочий ток 300 мА и выходное напряжение 45-64 В.
Если светильник построен по схеме с балластным резистором и его сопротивление известно (или его можно измерить), то напряжение светодиода можно определить расчетным способом. Для этого надо знать рабочий ток. В этом случае надо рассчитать:
- падение напряжения на резисторе – Uрезистора=Iраб*Rрезистора;
- падение напряжения на цепочке LED – Uled=Uпитания – Uрезистора;
- разделить Uled на количество приборов в цепочке.
Если Iраб неизвестен, его можно принять равным 20-25 мА (схема с резистором применяется для маломощных фонарей). Точность будет приемлема для практических целей.
Рекомендации по проверке лампы при покупке
Радиаторы светодиодных ламп
Покупая осветительное изделие, его следует визуально осмотреть в магазине. Корпус должен быть без царапин и вмятин. Нужно убедиться в наличии радиатора. Он может быть монолитным или наборного типа. Размеры зависят от мощности лампы – чем она выше, тем крупнее радиатор.
Также проверяется цоколь. Он должен быть без механических дефектов и люфтов. По возможности нужно проверить работоспособность лампы путем подключения к электросети. На свет нужно посмотреть через камеру телефона, чтобы убедиться в отсутствии пульсаций. Если заметны мигания, лампа некачественная, покупать ее не рекомендуется.
Сколько вольт имеет прямое напряжение светодиода
Вольт-амперная характеристика LED.
Если изучить стандартную вольт-амперную характеристику светодиода, можно заметить на ней несколько характерных точек:
- В точке 1 p-n переход начинает открываться. Через него начинает идти ток и LED начинает светиться.
- При увеличении напряжения ток достигает рабочего значения (в данном случае 20 мА), и в точке 2 напряжение является рабочим для данного LED, яркость свечения становится оптимальной.
- При дальнейшем увеличении напряжения ток растет, и в точке 3 достигает своего максимально допустимого значения. После этого он быстро выходит из строя, а кривая ВАХ растет только теоретически (штриховой участок).
Надо заметить, что после окончания перегиба и выхода на линейный участок ВАХ имеет большую крутизну, что ведет к двум последствиям:
- при увеличении тока (например, при неисправности драйвера или отсутствии балластного резистора) напряжение растет слабо, поэтому можно говорить о постоянном падении напряжения на p-n переходе, независимо от рабочего тока (эффект стабилизации);
- при небольшом увеличении напряжения ток растет быстро.
Какими бывают
Как выглядит инфракрасный светодиод и можно ли его отличить от обычного? Вопрос довольно сложный, поскольку инфракрасные полупроводники имеют огромное количество форм-факторов – все зависит от их характеристик и назначения.
В компьютерных мышках и в пультах ДУ, к примеру, стоят обычные трехмиллиметровые приборы, в CD-приводах и лазерных принтерах – сверхминиатюрные в SMD или металлостеклянном корпусе. В ИК-прожекторах могут стоять как множество маломощных, так и несколько мощных инфракрасных светодиодов: обычных, диаметром до 10 мм или в SMD корпусе.
Цвет баллона тоже может быть различным – от прозрачного и металлического с прозрачным окном до матово-черного. Конечно, эти приборы можно отличить от светоизлучающих с красным и желтым баллонами – инфракрасные светодиоды не имеют таких цветов, но и только.
Что касается технических характеристик инфракрасных светодиодов, то основные из них следующие:
- Угол рассеивания. Чем этот параметр выше, тем меньше освещенности приходится на определенную поверхность объекта, но тем большую площадь он покрывает ИК-излучением. Измеряется в градусах телесного угла – стерадианах (Ω).
- Выходная мощность. Измеряется в ваттах (Вт) или милливаттах (мВт) и может колебаться от десятков милливатт до нескольких ватт.
- Рабочий ток. Ток, при котором гарантируются заявленные характеристики, включая наработку на отказ и выходную мощность излучения. Измеряется в амперах (миллиамперах).
- Прямое падение напряжения. Напряжение, которое падает на кристалле при номинальном токе. Зависит от материала кристалла и обычно не превышает 2 вольт.
- Обратное максимально допустимое напряжение. Напряжение обратной полярности, которое выдерживает кристалл без электрического повреждения. Для инфракрасных приборов обычно не превышает 1 вольта.
- Излучаемая длина волны. Если светодиод лазерный, то указывается одна длина волны, и это понятно. Если же это обычный инфракрасный светодиод, то нередко указывается диапазон излучаемых им волн, которые измеряются в нанометрах или микрометрах (нм или мкм).
Схемы подключения led лент
Схема подключения одной монохромной светодиодной ленты
Схема подключения одной монохромной СДЛ
Схема состоит из:
- Блок питания. Представляет собой корпус, выполненный из пластмассы/алюминия/металла с расположенными с двух стороны выходами:
- с одной стороны – клеммы для подключения переменного напряжения от сети 220 В (L – фазное напряжение, N – нулевой провод);
- с противоположной стороны – две и более пар параллельно смонтированных клемм (– V +V). Количество пар зависит от мощности БП.
К каждой паре возможно подключить одну СДЛ длиной не более 5 м, т.к. при большей длине увеличится ток нагрузки, что приведет к выходу из строя диодов.
- Питающие провода красного (плюс) и черного (минус) цвета, соответствующей полярности.
- Светодиодная одноцветная лента.
Принцип действия: к БП подключается напряжение сети 220 В и питающие провода led платы с соблюдением полярности. Напряжение сети, проходя через БП понижается до значения рабочего напряжения (12, 24, 36 В) и преобразуется из переменного в постоянное. Далее рабочее напряжение поступает по питающим проводом на кристаллы, которые загораются.
Схема подключения RGB ленты:
Схема подключения rgb ленты
Схема состоит из:
- Блока питания аналогичному схем подключения монохромной СДЛ.
- RGB – контроллера, который отвечает за оттенок и визуальный эффект.
- Питающие провода красного (плюс) и черного (минус) цвета, соответствующей полярности, а также красного, зеленого и синего цветов.
- Светодиодная RGB лента.
Принцип действия: к БП подключается напряжение сети 220 В и питающие провода красного и черного цвета, соединяющие БП с контроллером.
Питающее напряжение сети, проходя через блок питания понижается до значения рабочего напряжения (12, 24, 36 В) и преобразуется из переменного в постоянное. Далее рабочее напряжение поступает по четырем питающим проводам (красный, зеленый, синий и черный) на диодную плату. Каждый цвет кристалла получает питание по своей дорожке аналогичного цвета. СДЛ загорается оттенком установленным контроллером.