Управляемый стабилизатор напряжения tl431 (on semiconductor)

Содержание:

ЗУ для мобильного телефона

Стабилизатор можно применить как своеобразный ограничитель тока. Это свойство будет полезным в устройствах для зарядки мобильного телефона.

Если напряжение в выходном каскаде не достигнет 4,2 В, происходит ограничение тока в цепях питания. После достижения заявленных 4,2 В стабилизатор уменьшает величину напряжения — следовательно, падает и величина тока. За ограничение величины тока в схеме отвечают элементы схемы VT1 VT2 и R1-R3. Сопротивление R1 шунтирует VT1. После превышения показателя в 0,6 В элемент VT1 открывается и постепенно ограничивает подачу напряжения на биполярный транзистор VT2.

На базе транзистора VT3 резко уменьшается величина тока. Происходит постепенное закрытие переходов. Напряжение падает, что приводит к падению силы тока. Как только U подходит к отметке 4,2 В, стабилизатор tl431 начинает уменьшать его величину в выходных каскадах устройства, и заряд прекращается. Для изготовления устройства необходимо использовать следующий набор элементов:

  • DA1 – TL431K — если нет в наличии этого элемента, то его можно заменить на tl4311, tl783ckc ;
  • R1 – 2,2 Ом;
  • R2 – 470 Ом;
  • R3 – 100 кОм;
  • R4 – 15 кОм;
  • R5 – 22 кОм;
  • R6 – 680 Ом;
  • VT1, VT2 – BC857B;
  • VT3 – az431 или az339p ;
  • VT4 – BSS138.

Необходимо обратить особое внимание на транзистор az431. Для равномерного уменьшения напряжения в выходных каскадах желательно поставить транзистор именно az431, datasheet биполярного транзистора можно наблюдать в таблице

Операционный усилитель TL431 является многофункциональным элементом и дает возможность конструировать различные устройства: зарядные для мобильных телефонов, системы сигнализации и многое другое. Как показывает практика, операционный усилитель обладает хорошими характеристиками и не уступает зарубежным аналогам.

Производители

Из-за своих хороших параметров, надежности и дешевизны, TL431 используется в различных технических решениях. Поэтому её производством занимаются многие зарубежных компаний. Существует даже полностью переведенный datasheet tl431 на русском от Texas Instruments (TI). А вот ссылки на некоторые даташит устройств продающихся в РФ: TI, ON Semiconductor, STMicroelectronics, Nexperia, HTC Korea, NXP Semiconductors. Есть еще изготовители этих изделий, но их трудно найти в российских магазинах. К ним относятся: Unisonic Technologies, Motorola, Fairchild Semiconductor, Diodes Incorporated, HIKE Electronics, Calogic, Sangdest Microelectronic (Nanjing), SeCoS Halbleitertechnologie GmbH, Hotchip Technology, Foshan Blue Rocket Electronics и др.

Технические характеристики TL431

Рассмотрим максимально допустимые рабочие характеристики микросхемы. Если при его эксплуатации они будут превышены, то устройство неминуемо выйдет из строя. Продолжительная эксплуатация с параметрами, близкими к предельным значениям, также не допускается. Рассмотрим их подробней:

  • катодное выходное напряжение (VKA), по отношению к выводу анода до 37 В;
  • возможные значения токов: для непрерывного катодного на выходе (IKA) от –100 мА до 150 мА; для обратного на входе от -50 мА до 10 мА;
  • типовой импеданс до 0,22 Ом;
  • рассеиваемая мощность (для разных типов упаковки) PD: 0.8 Вт (SOT-89); 0,78 Вт (ТО-92); 0.75 Вт (SO-8); 0,33 Вт (SOT-23); 0,5 Вт (SOT-25);
  • температура кристалла (TJ): рабочая: 0…+70 ОС; -40 … +125ОС (для некоторых автомобильных версий); максимальная (TJmax) до +150ОС;
  • тепловое сопротивление корпуса RθJC: 97ОС/Вт (D); 156 ОС/Вт (LP); 28 ОС/Вт (KTP); 127ОС/Вт (P); 52ОС/Вт (PK); 149ОС/Вт (PW);
  • температура хранения: -65… +150 ОС.

Рекомендуемые параметры эксплуатации

В рабочих условиях рекомендуемыми значениями использования TL413 являются: входное опорное напряжение (VREF) не более 36 В; катодный ток (IKA) должен быть в диапазоне от 1 до 100 мА; соблюдение температурных режимов использования. Стоит учитывать, что при IKA <5 мА данная микросхема может функционировать нестабильно. Ниже представлены электрические параметры устройства, замеренные при температуре ТА= 25°C.

Аналоги TL431

ИМС tl431 аналог, которой нужно подобрать, относится к управляющим стабилитронам. Поэтому подбирать аналогичную ИС необходимо по электрическим параметрам: опорному напряжению, входному напряжению, рабочему току и конструктивным особенностям.

Осторожно. Аналоги могут быть: полными, ближайшими и функциональными

В зависимости от новой детали, возможны дополнения и изменения к электронной схеме, куда она будет устанавливаться (замещаться). При подборе аналога следует учесть, что первые две буквы перед цифрами – это название производителя.

К примеру, транзистор az431 характеристики которого при проверке совпадают с tl431, это он же и есть, просто производитель другой.

Некоторые аналоги для TL431

Производители

Из-за своих хороших параметров, надежности и дешевизны, TL431 используется в различных технических решениях. Поэтому её производством занимаются многие зарубежных компаний. Существует даже полностью переведенный datasheet tl431 на русском от Texas Instruments (TI). А вот ссылки на некоторые даташит устройств продающихся в РФ: TI, ON Semiconductor, STMicroelectronics, Nexperia, HTC Korea, NXP Semiconductors. Есть еще изготовители этих изделий, но их трудно найти в российских магазинах. К ним относятся: Unisonic Technologies, Motorola, Fairchild Semiconductor, Diodes Incorporated, HIKE Electronics, Calogic, Sangdest Microelectronic (Nanjing), SeCoS Halbleitertechnologie GmbH, Hotchip Technology, Foshan Blue Rocket Electronics и др.

Схемы включения

Стабилизатор LM317 зарекомендовал себя универсальной микросхемой способной стабилизировать напряжение и Амперы. За десятки лет разработаны сотни схем включения LM317T различного применения. Основное назначение, это стабилизатор напряжения в блоках питания. Для увеличения силы количества Ампер на выходе есть несколько вариантов:

  1. подключение параллельно;
  2. установка на выходе силовых транзисторов, получим до 20А;
  3. замена на мощные аналоги LM338 до 5A или LM350 до 3А.

Для построения двухполярного блока питания применяются стабилизаторы отрицательного напряжение LM337.

Считаю, что параллельное подключение не самый лучший вариант из-за разницы в характеристиках стабилизаторов. Невозможно настроить несколько штук точно на одинаковые параметры, чтобы распределить нагрузку равномерно. Благодаря разбросу, на один нагрузка всегда будет больше чем на другие. Вероятность выхода из строя нагруженного элемента выше, если он сгорит, то резко возрастёт нагрузка на другие, которые могут не выдержать её.

Чтобы не подключать параллельно, лучше использовать для силовой части DC-DC преобразователя напряжения транзисторы на выходе. Они рассчитаны на большой ток и отвод тепла у них лучше из-за больших размеров.

Советуем изучить Все существующие методы наращивания провода под водой или в квартире: как удлинить кабель при разных условиях?

Современные импульсные микросхемы уступают по популярности, её простоту трудно превзойти. Стабилизатор тока на lm317 для светодиодов прост в настройке и расчётах, в настоящее время до сих пор применяется на небольших производствах электронных блоков.

Светодиодный драйвер

Светодиодный драйвер до 5А

Зарядное для аккумуляторов

Регулируемый двухполярный блок питания от 0 до 36В

Двухполярный БП LM317 и LM337, для получения положительного и отрицательного напряжения.

Графики электрических характеристик

Добрый день. Я не электронщик но то что мне было нужно я нашел. Большое спасибо. Понравились две первые схемки (переделал схем 20, но то греется, можно чай кипятить, то тока на выходе нет), но без индикатора заряда. Помогите пожалуйста в этом вопросе. Заранее благодарен. С уважением Александр.

Проще готовый блок купить за 100-150 руб.

Я тоже из Кирова, из Ганги.

Здравствуйте ,случилась поломка ASUS Maximus VI Extreme , нашел замкнутый F90 P02 CFD0423 вроде полевик данных не нашел , какой структуры и чем заменить не в курсе , помогите с информацией . Если что не так написал извините в первый раз советуюсь .

TL 431 это программируемый шунтирующий регулятор напряжения. Хотя, эта интегральная схема начала выпускаться в конце 70-х она до сих пор не сдаёт своих позиций на рынке и пользуется популярностью среди радиолюбителей и крупных производителей электротехнического оборудования. На плате этого программируемого стабилизатора находится фоторезистор, датчик измерения сопротивления и терморезистор. TL 431 повсеместно используются в самых разных электрических приборах бытовой и производственной техники. Чаще всего этот интегральный стабилитрон можно встретить в блоках питания компьютеров, телевизоров, принтеров и зарядок для литий-ионных аккумуляторов телефонов.

Читать также: Что такое предусилитель звука

Схемы включения TL431

Рабочие характеристики стабилизатора задаются двумя резисторами. Варианты использования данной микросхемы могут быть различные, но максимальное распространение она получила в блоках питания с регулируемым и фиксированным напряжением. Часто применяется в стабилизаторах тока в зарядных USB устройствах, промышленные блоки питания, принтеров и другой бытовой техники.

TL431 есть практически в любом блоке питания ATX от компьютера, позаимствовать можно из него. Силовые элементы с радиаторами, диодными мостами тоже там есть.

На данной микросхеме реализовано множество схем зарядных устройств для литиевых аккумуляторов. Выпускаются радиоконструкторы для самостоятельной сборки своими руками. Количество вариантов применение очень большое, хорошие схемы можно найти на зарубежных сайтах.

Как проверить мультиметром

TL431 нельзя проверить с помощью мультиметра, так как это не простой стабилитрон, а интегральная микросхема. Сопротивления между его выводами у разных производителей отличаются. Поэтому, для того чтобы убедится в её исправности обычно собирают простейшие схемы проверки.

Для проверки в схеме изображенной на рисунке слева, на вход подается 12 В. Если устройство исправно, то на выходе должно появится напряжение 4.9-5.0 В, а при замыкании кнопки S1 – 2.5 В. Мультиметр, в данном случае, нужен для измерения результатов тестирования.

TL431 можно также проверить в другой тестовой схеме со светодиодом (рисунок справа). При изменении сопротивления R2 потенциометра, на управляющем электроде появится 2.5 В. Диод должен скачкообразно перейти в светящееся состояние. Это будет означать то, что устройство исправно. Данный принцип работы можно использовать для создания индикатора разряда аккумулятора.

TL 431 интегральный стабилитрон

Основные характеристики программируемого источника опорного напряжения TL 431

  • ​ Номинальное рабочее напряжение на выходе от 2,5 до 36 В;
  • Ток на выходе до 100 мА;
  • Мощность 0,2 Ватт;
  • Диапазон рабочей температуры для TL 431C от 0° до 70°;
  • Диапазон рабочей температуры для TL 431A от -40° до +85°.

Точность интегральной схемы TL 431 указывается шестой буквой в обозначении:

  • Точность без буквы – 2%;
  • Буква А – 1%;
  • Буква В – 0, 5%.

Столь широкое его применения обусловлено низкой ценой, универсальным форм-фактором, надёжностью, и хорошей устойчивостью к агрессивным факторам внешней среды. Но также следует отметить точность работы данного регулятора напряжения. Это позволило ему занять нишу в устройствах микроэлектроники.

Основное предназначение TL 431 стабилизировать опорное напряжение в цепи. При условии, когда напряжение на входе источника ниже номинального опорного напряжения, в программируемом модуле транзистор будет закрыт и проходящий между катодом и анодом ток не будет превышать 1 мА. В случае, когда выходное напряжение станет превышать запрограммированный уровень, транзистор будет открыт и электрический ток сможет свободно проходит от катода к аноду.

Схема включения TL 431

В зависимости от рабочего напряжения устройства схема подключения будет состоять из одноступенчатого преобразователя и расширителя (для устройств 2,48 В.) или модулятора небольшой ёмкости (для устройств 3.3 В). А также чтобы снизить риск короткого замыкания, в схему устанавливается предохранитель, как правило, за стабилитроном. На физическое подключение оказывает влияние форм-фактор устройства, в котором будет находиться схема TL 431, и условия окружающей среды (в основном температура).

Стабилизатор на основе TL 431

Простейшим стабилизатором на основе TL 431 является параметрический стабилизатор. Для этого в схему нужно включить два резистора R 1, R 2 через которые можно задавать выходное напряжение для TL 431 по формуле: U вых= Vref (1 + R 1/ R 2). Как видно из формулы здесь напряжение на выходе будет прямо пропорционально отношению R 1 к R 2. Интегральная схема будет держать напряжение на уровне 2,5 В. Для резистора R 1 выходное значение рассчитывается так: R 1= R 2 (U вых/ Vref – 1).

Эта схема стабилизатора, как правило, используется в блоках питания с фиксированным или регулируемым напряжением. Такие стабилизаторы напряжения на TL 431 можно обнаружить в принтерах, плоттерах, и промышленных блоках питания. Если необходимо высчитать напряжение для фиксированных источников питания, то используем формулу Vo = (1 + R 1/ R 2) Vref.

Временное реле

Прецизионные характеристики TL 431 позволяют использовать его не совсем по «прямому» назначению. Из-за того, что входной ток этого регулируемого стабилизатора составляет от 2 до 4 мкА, то используя данную микросхему можно собрать временное реле. Роль таймера в нём будет исполнять R1 который начнёт постепенно заряжаться после размыкания контактов S 1 C 1. Когда напряжение на выходе стабилизатора достигнет 2,5 В, транзистор DA1 будет открыт, через светодиоды оптопары PC 817 начёт проходить ток, а открытый фоторезистор замкнёт цепь.

Термостабильный стабилизатор на основе TL 431

Технические характеристики TL 431 позволяют создавать на его основе термостабильные стабилизаторы тока. В которых резистор R2 выполняет роль шунта обратной связи, на нём постоянно поддерживается значение 2,5 В. В результате значение тока на нагрузке будет рассчитываться по формуле Iн=2,5/R2.

Цоколёвка и проверка исправности TL 431

Форм-фактор TL 431 и его цоколёвка будет зависеть от производителя. Встречаются варианты в старых корпусах TO -92 и новых SOT-23. Не стоит забывать про отечественный аналог: КР142ЕН19А тоже широко распространённый на рынке. В большинстве случаев цоколёвка нанесена непосредственно на плату. Однако не все производители так поступают, и в некоторых случаях вам придётся искать информацию по пинам в техпаспорте того или иного устройства.

TL 431 является интегральной схемой и состоит из 10 транзисторов. Из-за этого проверить её мультиметром невозможно. Для проверки исправности микросхемы TL 431 нужно использовать тестовую схему. Конечно, часто нет смысла искать перегоревший элемент и проще заменить схему целиком.

Программы расчёта для TL 431

В интернете существует множество сайтов, где вы сможете скачать программы-калькуляторы для расчёта параметров напряжения и силы тока. В них можно указывать типы резисторов, конденсаторов, микросхем и прочих составных частей схемы. TL 431 калькуляторы также бывают онлайн, они по функционалу проигрывают устанавливаемым программам, но если вам нужно исключительно входные/выходные и максимальные значения схемы, то они справятся с этой задачей.

Технические характеристики TL431

Рассмотрим максимально допустимые рабочие характеристики микросхемы. Если при его эксплуатации они будут превышены, то устройство неминуемо выйдет из строя. Продолжительная эксплуатация с параметрами, близкими к предельным значениям, также не допускается. Рассмотрим их подробней:

  • катодное выходное напряжение (VKA), по отношению к выводу анода до 37 В;
  • возможные значения токов: для непрерывного катодного на выходе (IKA) от –100 мА до 150 мА; для обратного на входе от -50 мА до 10 мА;
  • типовой импеданс до 0,22 Ом;
  • рассеиваемая мощность (для разных типов упаковки) PD: 0.8 Вт (SOT-89); 0,78 Вт (ТО-92); 0.75 Вт (SO-8); 0,33 Вт (SOT-23); 0,5 Вт (SOT-25);
  • температура кристалла (TJ): рабочая: 0…+70 ОС; -40 … +125ОС (для некоторых автомобильных версий); максимальная (TJmax) до +150ОС;
  • тепловое сопротивление корпуса RθJC: 97ОС/Вт (D); 156 ОС/Вт (LP); 28 ОС/Вт (KTP); 127ОС/Вт (P); 52ОС/Вт (PK); 149ОС/Вт (PW);
  • температура хранения: -65… +150 ОС.

Рекомендуемые параметры эксплуатации

В рабочих условиях рекомендуемыми значениями использования TL413 являются: входное опорное напряжение (VREF) не более 36 В; катодный ток (IKA) должен быть в диапазоне от 1 до 100 мА; соблюдение температурных режимов использования. Стоит учитывать, что при IKA <5 мА данная микросхема может функционировать нестабильно. Ниже представлены электрические параметры устройства, замеренные при температуре ТА= 25°C.

Описание

TL431 – datasheet на русском. TL431 представляет собой регулируемый стабилизатор напряжения параллельного типа (интегральный аналог стабилитрона) и предназначен для использования в качестве ИОН и регулируемого стабилитрона с гарантированной термостабильностью по сравнению с применяемым коммерческим температурным диапазоном.

Выходное напряжение может быть установлено на любом уровне от 2,495 V (VREF) до 36 V, для этого применяются два внешних резистора, которые являются делителем напряжения.

Этот стабилизатор имеет широкий диапазон рабочих токов от 1,0 мА до 100 мА с динамическим сопротивлением 0,22 Ом. Активные выходные элементы TL431 обеспечивают резкие характеристики включения, благодаря чему эта микросхема работает лучше обычных стабилитронов во многих схемах.

Погрешность опорного напряжения ± 0,4% (TL431B) позволяет отказаться от использования переменного резистора, что экономит затраты и уменьшает проблемы дрейфа и надежности.

Видео

Раз дело «выгорело» и пробник теперь есть, осталось помнить об этом и суметь в случае необходимости быстро его идентифицировать из числа других в таких, же корпусах, что лежат в предназначенной для этого коробке. А ещё нужно помнить, что рабочее напряжение пробника 12 вольт, что при не подключённом TL431 мультиметр будет показывать напряжение 10 вольт, при подключённом 5 вольт, а при нажатой кнопке 2,5 вольта и вдобавок правильно установить проверяемый компонент в панельку.  А можно особо и не запоминать, а оформить соответствующим образом лицевую панель. Автор проекта: Babay iz Barnaula.

Независимые устройства на базе микросхемы

Эту микросхему используют в блоках питания телевизоров и компьютером. Однако на её базе можно составить независимые электрические схемы некоторыми, из которых являются:

  • стабилизатор тока;
  • звуковой индикатор.

Стабилизатор тока

Стабилизатор тока — это одна из самых простых схем, которые можно реализовать на микросхеме tl 341. Он состоит из следующих элементов:

  • источника питания;
  • сопротивления R 1, подключённого с помощью общей точки к + линии питания;
  • шунтирующего сопротивления R 2 к — линии питания;
  • транзистора, чей эмиттер подключён к — линии через резистор R 2, коллектор к выходу — линии, а база через общую точку к катоду микросхемы;
  • микросхемы tl 341, чей анод подключён к — линии с помощью общей токи, а вывод ref включён в эмиттерную цепь транзистора также с помощью общей точки.

Звуковой индикатор

Звуковой индикатор на базе tl 341 представляет собой простую схему, изображённую на рисунке 5

Такой звуковой индикатор можно использовать для отслеживания уровня воды в какой-либо ёмкости. Датчик представляет собой электронную схему в корпусе с двумя выводными электродами, изготовленными из нержавеющей стали, один из которых расположен на 20 мм выше другого.

В момент соприкосновения выводов датчика с водой происходит снижение сопротивления и осуществляется переход tl 341 в линейный режим через резисторы R 1и R 2. Это способствует появлению автогенирации на резонансной частоте и образованию звукового сигнала.

Технические параметры

Свойства

Предлагаем рассмотреть максимально допустимые рабочие свойства микросхемы. Если при его применении они будут превышены, то устройство будет неминуемо выходить из строя. Длительная эксплуатация с характеристиками, которые близки к предельному значению, тоже недопустимы. Рассмотрим их подробнее:

  • Напряжение выходного типа, катодное (VКА), по отношению к анодному выводу до 37 В.
  • Вероятные токовые значения – для катодного значения непрерывного на выходе (IКА) составляет 100-150 мА, а для обратного при вхождении от 50 до 10 мА.
  • Типичный импеданс бывает от 0.22 Ом.
  • Мощность рассеиваемого типа (для различных видов упаковки) РD: 0.75 Вт (SO-8); 0,33 Вт (SOT-23); 0,5 Вт (SOT-25); 0.8 Вт (SOT-89) и 0,78 Вт (ТО-92).
  • Кристаллическая температура (ТJ) – рабочая от -40 до +70 градусов (для определенных автомобильных версий).
  • Температура хранения составляет от -65 до +155 градусов.

Рекомендуемые эксплуатационные параметры

При рабочих условиях рекомендованные значения применения стабилизатора является входное напряжение опорного типа не более 36 В, катодный ток должен быть от 1 до 100 мА, а также соблюдение режимов температуры при применении. Следует учесть, что при IКА< 5мА эта микросхема может работать нестабильно. Ниже есть электрические параметры устройства, которые замерены при температурном уровне ТА=25 градусов.

Схемы подключения

Требуется разобраться, как работает элемент на примере простой схемы стабилизации, которая состоит непосредственно из стабилитрона и 1 резистора. В катод требуется подключить положительный, а в анод минусовой полюс для запитки. Для подключения микросхемы, на ее управляющий электрод требуется подавать опорное напряжение. Если значение стабилизатора ТL получится больше 2.5 В, то стабилитрон практически сразу откроется и начинает пропускать через себя электрический ток, которым можно запитывать требуемую нагрузку. Его значение начнет расти вместе с увеличением уровня Vin. А вот ток можно определить по формуле IKA = (Vin— Vref)/R. При этом напряжение выходного типа будет стабилизовано на уровне опорного, которое не более 2.5 В и вне зависимости от подаваемого на входе Vin. Максимальное значение IKA  у стабилизатора ограничено не просто 100 мА, но и мощностью корпусного рассеивания.

Расчет параметрической стабилизационной схемы

Регулирование напряжения стабилизации

Для выстраивания схем с возможность регулирования вручную напряжения на выходе, вместо простого первого резистора устанавливают потенциометр. Номинал резистора ограничительного типа, который оказывает сопротивление току на входу, требуется рассчитать по формуле R=(VIN-VКА)/ IIN. При этом IIN = IKA+ IL. Несмотря на преимущества микросхемы, у нее есть достаточно существенный минус – малый ток в нагрузке, который она может выдержать. Для решения такой проблемы в схему требуется подключать полевые или мощные биполярные транзисторы. Примеры разных схем можно увидеть в видео.

Аналоги стабилизатора

Есть микросхемы отечественного производства, которые похожи по своим свойствам на рассматриваемую. Это линейный российский стабилизатор КР142ЕН19. Больше всего подойдут IR943N, ТL432 и LМ431. К устройствам с такой цоколевкой, но немного иными остальными электрическими характеристиками можно отнести НА17431А и КIА431. В роли замены еще можно попробовать применять АРL1431.

Технические характеристики TL431 и TL431A

У TL431A и TL431 такие параметры:

  • Мощность составляет 0.2 Вт.
  • Электрический ток на выходе достигает 100 мА.
  • Напряжение на выходе варьируется от 2,5 до 36 В.
  • Рабочая температура TL431 в диапазоне от 0 до +70 градусов.
  • Рабочая температура TL431A варьируется от -40 до +85 градусов.

Также важны другие параметры.

Линейное регулирование или регулирование на входе

Это степень, в которой выходное напряжение претерпевает изменения с изменением входного (питающего) напряжения. Это аналогично отношению изменения выходного сигнала к входному или изменению выходного напряжения за весь промежуток времени.

Изначальная точность регулятора напряжения (или точность напряжения)

Оно отображает ошибку в выходном напряжении для заданного регулятора без учета температурного фактора на точность вывода.

Падение напряжения

Показатель – минимальная разница между входным и выходным напряжением. Для этой разницы регулятор все еще может подавать указанный ток. Дифференциальный ток ввода-вывода, при котором регулятор напряжения не будет выполнять свою функцию, – падение напряжения. Дальнейшее снижение входного напряжения может привести к понижению выходного напряжения. Данное значение зависит от тока нагрузки и температуры перехода.

Пусковой ток или импульсный входной ток

Также называется импульсный выброс при включении. Данный параметр отображает максимальный мгновенный входной ток, который потребляется устройством во время первого включения. Период длительности пускового тока – полсекунды (или несколько миллисекунд), тем не менее он почти всегда высок. Учитывая это, он является опасным, так как может постепенно сжигать детали (в течение нескольких месяцев), особенно если нет соответствующей защиты от такого типа тока.

Ток покоя в цепи регулятора

Этот электрический ток потребляется внутри цепи. Он недоступен для нагрузки и измеряется как входной ток без подключения нагрузки.

Переходная реакция

Эта реакция происходит, когда случается внезапное изменение электротока нагрузки или же входного напряжения.

Расчёт напряжения TL431 

Вольт-амперная характеристика стабилитрона и его принцип работы

Чтобы разобраться с принципом работы стабилитрона, надо изучить его типовую вольт-амперную характеристику (ВАХ).

Если к зенеру приложить напряжение в прямом направлении, как к обычному диоду, то он и вести себя будет подобно обычному диоду. При напряжении около 0,6 В (для кремниевого прибора) он откроется и выйдет на линейный участок ВАХ. По теме статьи более интересно поведение стабилитрона при приложении напряжения обратной полярности (отрицательная ветвь характеристики). Сначала сопротивление его резко возрастет, и прибор перестанет пропускать ток. Но при достижении определенного значения напряжения произойдет резкий рост тока, называемый пробоем. Он носит лавинный характер, и исчезает после снятия питания. Если продолжать увеличивать обратное напряжение, то p-n переход начнет нагреваться и выйдет в режим теплового пробоя. Тепловой пробой необратим и означает выход стабилитрона из строя, поэтому вводить диод в такой режим не следует.

Интересен участок работы полупроводникового прибора в режиме лавинного пробоя. Его форма близка к линейной, и он имеет высокую крутизну. Это означает, что при большом изменении тока (ΔI) изменение падения напряжения на стабилитроне относительно невелико (ΔU). А это и есть стабилизация.

Такое поведение при подаче обратного напряжения характерно для любого диода. Но особенность стабилитрона в том, что его параметры на этом участке ВАХ нормированы. Его напряжение стабилизации и крутизна характеристики заданы (с определенным разбросом) и являются важными параметрами, определяющими пригодность использования прибора в схеме. Найти их можно в справочниках. Обычные диоды также можно использовать в качестве стабилитронов – если снять их ВАХ и среди них найдется с подходящей характеристикой. Но это долгий, трудоёмкий процесс с негарантированным результатом.

Описание работы

TL431 datasheet имеет всего три вывода, однако в ее корпусе спрятано десять транзисторов (компаратор). Функции этого устройства и обычного стабилизатора похожи. Однако, благодаря подобному усложнению, микросхема имеет более высокий уровень термостабильности, а также повышенную крутизну характеристики. Главной особенностью такого прибора является способность при помощи внешнего делителя изменять напряжение стабилизации в пределах 2,5-30 В. У некоторых моделей нижний порог может составлять 1,25 В. Схема компаратора, интегрированного в изделие datasheet TL431, состоит из следующих компонентов:

  • встроенный источник (весьма стабильный) опорного напряжения 2,5 В, который подключается к инверсному входу компаратора;
  • один вход прямого уровня;
  • на выходе компаратора транзистор, эмиттер и коллектор которого объединены с контактами питания;
  • диод для защиты от переполюсовки.

Транзистор имеет максимальный ток нагрузки 100 мА, а максимальное напряжение — 36 В. Для того чтобы сработал встроенный компаратор (соответственно, открылся транзистор на выходе микросхемы), необходим

о на его вход подать опорного. На входе микросхемы включен состоящий из двух резисторов, он делит величину напряжения пополам. Это значит, что компаратор откроется при поступлении на вход схемы 5 В, на выходе делителя же получаем 2,5 В. Если увеличивать сопротивление резистора, то необходимо также увеличивать и напряжение питания. Получается, что данная микросхема может работать в качестве стабилитрона в пределах 2,5-36 В.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector