Какую функцию выполняет заземление: для чего оно предназначено что собой представляет заземляющее устройство

Предназначение: цели и задачи

В основе всех PE-систем лежит общий принцип действия. Несмотря на это, они применяются для решения разных задач.

Защита от попадания молнии

Молния представляет собой мощный электрический разряд между облаками и поверхностью планеты или заземленным объектом.

Пробой возникает в месте наименьшего сопротивления. Это значит, что чем выше объект и чем больше у него проводимость, тем вероятнее удар молнии. В «группу риска» входят:

  • дома, особенно с мокрыми стенами;
  • деревья;
  • металлические конструкции;
  • электрокабели;
  • трубопроводы;
  • люди на открытой местности или на крыше здания.

Чтобы сделать разряд условно контролируемым, применяют молниеотводы – высокие заземленные металлические мачты.

Максимально допустимое сопротивление заземлителя нормируется РД 34.21.122-87 и другими документами. Оно зависит от категории здания по молниезащите:

  • I и II – 10 Ом;
  • III – 20 Ом.

При ударе молнии возникает импульс напряжением в сотни киловольт. Если громоотвод расположен вблизи здания, возможен пробой на любую из следующих систем:

  • трубопроводы;
  • электропроводка;
  • коммуникационные сети;
  • бытовые приборы.

От импульсного перенапряжения

В сети случаются кратковременные периоды увеличения напряжения, когда оно может в несколько раз превышать номинальное. Причиной этого могут стать:

  • попадание молнии в громоотвод или линию электропередач;
  • короткое замыкание;
  • переключение мощных индуктивных потребителей – двигателей и трансформаторов.

Импульсные перегрузки способны вывести из строя дорогую чувствительную аппаратуру. Для ее защиты применяют ограничитель перенапряжения. Такие устройства называют по-разному. Вариант для электроустановок вольтажом до 1 кВ принято именовать устройством защиты от импульсных перенапряжений (УЗИП).

Оно сбрасывает избыток энергии в землю. Соединение с контуром PE образуется в результате пробоя воздушного промежутка или особого полупроводникового прибора – варистора.

Существует 3 разновидности устройств защиты от импульсных перенапряжений:

Класс УЗИП Нейтрализуемый прибором поражающий фактор Место установки
I Грозовые разряды Ввод питающей сети в здание (РУ или ГРЩ)
II Переключения в сети и остаточные перенапряжения после разрядов молнии, не снятые УЗИП I класса Распределительные щиты
III Перекос фаз и остаточные перенапряжения, высокочастотные помехи Вблизи защищаемого прибора

Область применения УЗИП III класса – медицина и другие отрасли, использующие дорогое высокочувствительное оборудование.

Защита людей

В результате разрушения изоляции возможно замыкание фазы на металлический корпус прибора или иной нетоковедущий элемент. Коснувшись его, пользователь получит электротравму. Для предотвращения таких ситуаций корпус подключают к PE-контуру.

Действие системы основано на стремлении электрического тока двигаться по пути наименьшего сопротивления: у человека оно выше, чем у заземлителя.

Если установка запитана через устройство защитного отключения (УЗО), то при замыкании фазы на заземленный корпус она сразу будет обесточена.

Виды контуров заземления

Для быстрого «стекания» тока в землю наружная подсистема перераспределяет его на несколько электродов, расположенных в определенном порядке для увеличения площади рассеивания. Выделяются 2 основных вида соединения в контур.

Треугольник – замкнутый контур

В данном случае отвод тока реализуется при помощи трех штырей. Их жестко соединяют железными полосами, которые становятся ребрами равнобедренного треугольника. До того, как заземлить дом таким способом, необходимо разобраться в геометрических пропорциях. Действуют следующие правила:

  1. Количество штырей, полос – по три.
  2. Штыри монтируются в углах треугольника.
  3. Длина каждой полосы равна длине прута.
  4. Минимальное заглубление всей конструкции – о,5 м.

Конструкцию собирают до монтажа заземления на поверхности. Самое надежное соединение – сварное. Шина изготавливается из полосы достаточного сечения.

Линейный

Такой вариант составляется из нескольких электродов, расположенных в линию или полукругом. Используется разомкнутый контур в тех случаях, когда сформировать замкнутую геометрическую фигуру не позволяет площадь участка. Расстояние между штырями выбирается в пределах 1-1,5 глубины. Недостаток способа – увеличение количества электродов.

Указанные виды наиболее часто используются при обустройстве заземления частного дома. В принципе, замкнутый контур можно сформировать в форме прямоугольника, многоугольника или круга, но потребуется большее количество штырей. Главное преимущество замкнутых систем – продолжение функционирования в полном объеме при разрыве связки между электродами.

Почему бьёт током

Чтобы разобраться для чего нужно заземление, для начала разберёмся в каких случаях и почему нас бьет током. Главное, что нужно для протекания электрического тока – это разность потенциалов. Это значит, что если вы стоите на полу и возьметесь за оголенный провод или другую токоведущую часть руками – то ток через ваше тело и пол стечёт в землю. Переменный ток силой всего в 50 мА уже является опасным для человека. А если вы обеими руками возьметесь за токоведущую часть и повисните на ней не касаясь земли, то скорее всего ничего не произойдёт, проверять это, конечно не стоит.

Наибольшее сопротивление заземляющих устройств опор ВЛ.

Поэтому птиц не бьет током на проводах. Но вернёмся к разговору о заземлении. Как мы уже сказали, корпуса электроприборов заземляют. Для чего это нужно? Проводка и другие узлы оборудования, такие как электродвигатели, ТЭНы и прочее в нормальном состоянии не имеют контактов фазы с корпусом прибора, металлорукавом или бронёй кабеля. Но в случае неполадок фаза может оказаться на корпусе. Это может произойти при повреждении изоляции обмоток двигателей и трансформаторов, пробоя диэлектрического слоя ТЭНов, повреждения изоляции соединительных проводов внутри прибора и кабельных линий.

Глубина заземления.

В результате на корпусе окажется опасный потенциал, простым языком: корпус окажется “под фазой”. Когда вы коснетесь его стоя босиком на плитке, бетонном и даже деревянном полу – вас ударит током. В худшем случае, это может привести к смерти. Чаще всего такая ситуация возникает в результате частичного выхода из строя ТЭНов стиральных машин, водонагревательных баков, проточных нагревателей. А особенно ярко такое ощущается при одновременном касании стиральной машины и водопроводных и отопительных труб, или в случае с водонагревательным баком, когда вы принимаете душ или ванную вас, бьёт током. Последняя проблема решается организацией системы уравнивания потенциалов (заземлением ванны и других металлических частей водопровода).

Если корпус поврежденного прибора заземлён – опасное напряжение стечет на землю и (или) сработает защитный прибор – устройство защитного отключения (УЗО) или автоматический выключатель дифференциального тока (дифавтомат).

Если корпус занулён – сработает обычный автомат, так как это будет коротким замыканием на корпус (ноль в данном случае). Дифавтоматы и УЗО определяют утечку тока путём сравнения токов фазного и нулевого провода – если ток в фазе больше чем в нуле, значит ток втекает в землю, через заземляющий провод или через тело человека. Такие приборы срабатывают при дифференциальном токе (разнице токов) обычно в 10 мА и более.

Размеры и расстояния для заземляющих электродов

Обязательные условия которые необходимо соблюдать при устройстве заземления в частном доме:

Изначально лучше брать электрод длиной 3м. Так как в процессе забивания его кувалдой, будет расплющиваться та часть, по которой наносится удар. В конце Вам придется болгаркой несколько сантиметров такого расплющенного электрода срезать.

Вне зависимости от того, какого вида у Вас контур — в виде треугольника или прямой линии. Это связано с явлением растекания тока от заземлителей. Если электроды будут забиты ближе чем 2,5м то получается нет никакой разницы, сколько электродов Вы забили.

Работать они будут почти как один электрод.

Траншея — это место для укладки полосы, связывающей электроды. При меньшем углублении траншеи, полоса будет подвержена воздействию осадков и быстрому процессу коррозии. При большем углублении — опять возникает риск воздействия сырости от грунтовых вод.

  • расстояние контура заземления от фундамента дома — не менее 1м
  • после раскопки траншеи ее подсыпают песком для лучшего отвода воды от горизонтального заземлителя.

Что такое заземление?

Что такое заземление и с чем его едят. Представьте что электрически ток – это вода, и эта вода может течь только по трубам, и чем толще труба, тем легче воде течь. Любой проводник и даже человеческий организм является такой трубой (тоненькой, но трубой). Главное условие, чтобы ток потек, у трубы должно быть продолжение, то есть электрическая цепь должна быть замкнута.

При касании организма к любой поверхности с опасным потенциалом (например при хватании фазного провода одной рукой) – ток будет искать выход, то место куда ему можно стечь. Если человек стоит в резиновых тапочках и не за что не держится кроме оголенного провода, током его не ударит, потому что току не куда будет стекать (лучше не экспериментировать!). При условии, что другая часть тела касается любого токопроводящего контура, ток потечет через человека, что само собою очень опасно для здоровья.

В случае если заземление есть (и сделано оно по всем правилам), и при каких-нибудь обстоятельствах, опасный потенциал появляется на незащищенном от прикосновения участке (это может быть любая металлическая конструкция: металлические трубы, арматура дома, корпуса электроприборов, любые токопроводящие материалы, вода). При касании человеком опасного участка, ток как вода потечет по более «выгодному» для него пути, то есть через контур заземления — в землю, и соответственно человек (при правильно рассчитанном заземлении) практически ничего не почувствует. Для этого к заземляющему контуру применяются особые требования, которые прописаны в правилах устройства электроустановок ПУЭ. В общем заземляющий контур, – это такая большая и толстая труба, по которой можно быстро «сливать» большие объемы тока в землю..

Основные виды заземления

Конструкция, обеспечивающая контакт с грунтом, может иметь разное назначение. В зависимости от этого заземление делят на 2 вида.

Естественное

Такие системы используют в качестве Pe-контура уже существующие металлоконструкции, врытые в грунт.

Примеры:

  • части зданий и сооружений, арматуры их фундаментов;
  • трубопроводы, кроме транспортирующих горючие и взрывоопасные вещества;
  • обсадные колонны скважин;
  • свинцовые оболочки кабелей;
  • рельсовые пути неэлектрифицированных железных дорог.

Естественное заземление предпочтительно, т.к. позволяет снизить затраты на устройство системы.

Искусственное

В такой системе используют Pe-контур, специально изготовленный для сброса заряда в грунт. К этому варианту прибегают в ситуациях, когда естественное заземление отсутствует или у него высокое сопротивление растеканию тока.

Заземляем сами

При прокладке заземляющего контура защиты в первую очередь необходимо выбрать тип схемы, по которой будут вестись работы. Опытные мастера рекомендуют выбирать схему типа TN-C-S. Её основное преимущество заключается в том, что оборудование имеет непосредственный контакт с землей. Контакт нейтрали и земли ведется одним проводником, а на входе в щиток разделяются на 2 отдельных. Данная схема обеспечивает надежную защиту, поэтому устанавливать УЗО нет необходимости, достаточно лишь простых автоматов. Однако согласно ПУЭ обязательно выполнить требования по механической защите общего контакта нейтрали и земли (PEN), а также создать дополнительное резервное заземление на опорах на расстоянии 200 м или 100 м.

Создать контур защитного заземления достаточно просто, если руководствоваться правилами перечисленными ниже. В первую очередь для создания контура необходимо выбрать схему защитного заземления, их существует несколько видов, самые надежные и удачные:

  • замкнутая (выполняется, как правило, по форме треугольника);
  • линейная.

В замкнутой схеме все заземляющие проводники вкопаны в землю, находятся на одной глубине и соединены между собой металлической перемычкой. Основное преимущество — работоспособность в случае разрыва (от коррозии или других воздействий) металлической перемычки.

В линейной же схеме проводники выстроены в одну линию и соединены перемычкой последовательно друг с другом. Данная схема чуть более проста в создании, но имеет недостаток — при повреждении перемычки из строя выходит вся система.

Создание контура заземления

Итак, для создания контура заземления нам понадобятся следующие инструменты и материалы:

  • Лопата.
  • Сварочный аппарат (обязателен).
  • Пила по металлу или болгарка.
  • Кувалда.
  • Пассатижи, гаечные ключи.
  • Металлический уголок/швеллер/П-образный профиль из нержавеющий стали длиной от двух метров (с площадью поперечного сечения ДО 150 мм²).
  • Металлические полоски длиной от 110 см, шириной 4 см, толщиной 4–5 мм.
  • Металлическая полоса необходимой длины (от места залегания до места контакта с домом), ширина 4 см, толщина 4–5 мм.
  • Крупные болты, гайки и шайбы (М8-М10).
  • Провод из меди с толщиной не менее 6 мм².

После того как все необходимое имеется в наличии можно приступать к монтажу защитного заземления. В первую очередь следует выбрать место, лучше всего выбрать такой участок земли, где редко находятся люди или животное, так как во время отвода электричества в почву может произойти поражение электрическим током. Лучше всего выбрать место на границе участка, на максимальном удалении от зоны постоянного посещения.

После чего необходимо выкопать узкую траншею глубиной 60–70 см от места контакта с домом до места отвода электричества. В месте отвода электричества необходимо выкопать соответствующую фигуру (в зависимости от выбранной схеме) со сторонами ~1.2 м между проводниками.

Затем в каждом углу фигуры (у нас это треугольник) — вкапываются металлические уголки в землю на глубину 2 м и больше. К торчащим концам вкопанных проводников привариваются заготовленные заранее металлические пластины, к одному концу которой приваривается полоса-проводник, идущая непосредственно к месту контакта заземления с домом.

В месте контакта заземления к этой пластине монтируется провод из меди, который уже выходит из под земли и выводится в электрощиток.

После выполнения этих работ траншеи обратно закапываются. На данном этапе работы по защитному заземлению можно считать законченными.

Для чего применяются УЗО и дифавтоматы

Простое заземление устройств – это хорошо, но еще лучше обеспечить дополнительную защиту. Для этого придумали устройство защитного отключения (УЗО) и дифференциальные автоматы.

Дифавтомат – это устройство, которое в своём корпусе объединяет УЗО и обычный автоматический выключатель, так вы сэкономите место в электрощите.

УЗО – реагирует только на токи утечки. Принцип его работы такой: оно сравнивает количество тока через фазный и через нулевой провод, если часть тока утекла на землю, то оно моментально реагирует, отключая цепь. Их отличают по чувствительности от 10 до 500 мА. Чем чувствительнее УЗО, тем чаще оно будет срабатывать, даже при незначительных утечках, но не стоит устанавливать слишком грубое УЗО для дома.

Принцип работы защищенной цепи простым языком:

Когда на корпус заземленного электрооборудования попадает фаза, между фазным проводом и корпусом начинает протекать ток. Тогда УЗО замечает, что по фазному проводу прошел ток, часть тока куда-то делать и по нулевому проводу вернулся меньший ток, после чего эта цепь обестачивается. Так вы защищены от удара током.

Если установить УЗО в двухпроводной электроцепи без заземляющего проводника и где-то появится возможность утечки тока, оно сработает только после того как вы коснетесь этого места и ток утечет на землю через вас. В таком случае вы тоже будете в безопасности.

В каких случаях необходимо проверять контур заземления?

Если Вы выполняете устройство заземления в частном доме или на даче, то проверку можно выполнить и обычной контрольной лампочкой (как было описано выше), если же Вас необходимо вводить объект в эксплуатацию, легализировать изменение в схеме электроснабжения или же заключать договор на электроснабжения со специализированной организацией, тогда вам будет необходим протокол испытания контура заземления.

Данный документ имеет право выдать только сертифицированная лаборатория, которая выполнит замеры. При этом подрядная организация, которая выполняла монтаж контура заземления обязана предоставить Вам паспорт на контур заземления с актами на скрытые работы.

ПРИМЕР РАСЧЕТА ЗАЗЕМЛЯЮЩЕГО УСТРОЙСТВА

Рассмотрим следующий пример расчета заземляющего устройства. Заземляющее устройство подстанции требуется выполнить с сопротивлением

=4ом . Грунт в районе подстанции имеет замеренное удельное сопротивление ρ = 0,6·104ом·см . Заземлитель выполняется из уголков 50×50мм длиной 2,5м , соединяемых стальными полосами 40×54мм .

Требуется определить количество уголков и длину стальной полосы.

Вначале определяем приближенно количество уголков и общую длину стальной полосы.

По табл. 3 уголок 50×50 мм

имеет сопротивление растеканию

0,00318 ρ = 0,00318·0,6·104 = 19,1 ом

По наведенным справкам (на метеорологической станции) район относится ко II климатической зоне по табл. 4. В соответствии с этой таблицей для учета высыхания или промерзания грунта принимаем для уголков повышающий коэффициент равным 1,8. Тогда сопротивление одного уголка будет равно

19,1·1,8 = 34,4 ом

Примем расположение уголков возле подстанции в один ряд с расстоянием между ними 3 м

(см. рис. 11), т. е. контур заземления будет относительно простым.

Для учета взаимоэкранирования уголков в контуре принимаем коэффициент использования (см. § 9) равным 2 (Выбор коэффициентов использования приведен в специальной литературе и электротехнических справочниках). Таким образом, сопротивление одного уголка в контуре следует принимать равным

34,4·2 = 68,8 ом

,

а количество уголков

Таким образом, можно было бы принять для контура 17 уголков, если не учитывать еще сопротивления растеканию полосы как заземлителя. Однако при длине около 48 м

, которая требуется для соединения 17 уголков, учет этого сопротивления, как увидим, даст возможность уменьшить их количество. По графику на рис. 10 находим, что сопротивление полосы длиной 48м равно примерно 2ом . По табл. 4 принимаем повышающий коэффициент 4 на высыхание или промерзание грунта; коэффициент, учитывающий взаимоэкранирование полосы с трубами, принимаем равным 2,5. Таким образом, сопротивление полосы следует считать равным

2·4·2,5 = 20 ом

Уголки и полоса представляют собой два параллельно соединенных сопротивления. Их общее сопротивление, т. е. сопротивление контура заземляющего устройства подстанции

; определяется из уравнения

где Rуг

— общее сопротивление всех уголков;

Rп

— сопротивление полосы.

Из этого уравнения находим, что общее сопротивление уголков должно быть равно

Теперь уточняем требуемое количество уголков. Оно равно

Чтобы оставить длину соединительной полосы равной 48 м

, удлиняем се на двух углах контура на 4,5м с каждой стороны.

Фактическое сопротивление заземляющего устройства должно проверяться измерением на объекте. В случае необходимости к контуру присоединяются дополнительные заземлители.

Приведенный выше расчет выполнен исходя из того, что поблизости нет естественных заземлителей (Rест

). Если же они имеются, необходимо произвести измерение их сопротивления. Если сопротивление их достаточно мало (4ом или ниже для данного примера), то устройства искусственных заземлителей не требуется. Если оно слишком велико, то его уменьшают путем добавления искусственных заземлителей.

Допустим, что в рассмотренном выше случае можно использовать имеющийся вблизи естественный заземлитель (водопровод) с сопротивлением 5 ом

. В таком случае искусственный заземлитель должен быть выполнен уже не на 4ом , а только на 20ом . Его сопротивление подсчитывается по формуле

Дальнейший расчет производится так же, как указано выше.

Как работает заземление

Для начала разберемся, почему на корпусе стиральной машинки или другого электрооборудования появилось опасное напряжение. Всё достаточно просто – изоляция проводников по какой-то причине испортилась или повредилась и поврежденный участок касается металлического корпуса какой-то из деталей оборудования.

Если у вас нет заземления или зануления корпус поврежденного устройства для электрической цепи ничего собой не представляет, пока вы его не коснетесь, конечно. Вы подходите к прибору, стоите на полу, пол имеет хоть и слабый, но какой-то контакт с землей. При прикосновении к корпусу ток начинает протекать через вас в землю. Для протекания тока нужна разность потенциалов, а потенциал фазного провода всегда больше потенциала земли. Получается, что вы замыкаете фазный провод на землю своим телом.

Для человека опасны даже такие маленькие значения как 50 мА – такой ток может привести к фибрилляции желудочков сердца и смерти.

Почему в домах нельзя выполнять зануление?

Кстати этот случай наглядно показывает, почему в домах нельзя выполнять зануление, то есть присоединять корпуса приборов к нулевому проводу, как это иногда делают горе-электрики в домах где нет заземления. Действительно, пока все работает нормально, нет большой разницы к нулевому или заземляющему проводу присоединены корпуса защищаемых электроприборов. Но при отгорании нулевого провода на нем, а следовательно и на всех присоединенных к нулевому проводу приборах, появится напряжение 220 В. То же самое произойдет, если при ремонте распределительного щитка электрик перепутает нулевой провод с фазным. В этом случае корпуса приборов окажутся присоединенными не к нулевому, а к фазному проводу и на них тоже будет присутствовать напряжение 220 В.

Итак, токовая цепь это путь тока от подстанции к потребителю и обратно от потребителя к подстанции. Если в каком-то месте она нарушена, тока в цепи не будет. Сидящих на проводах птиц не бьет током только потому, что нет цепи для прохождения тока. Стоящего на резиновом коврике электрика не бьет током, потому что коврик мешает току вернуться на подстанцию по цепи: фазный провод -> электрик -> земля -> подстанция. Вот и причина того почему при одном и том же напряжении ток может лишь слегка щипнуть человека, а может и убить. Все зависит от того есть ли у него надежный путь для возвращения на трансформаторную подстанцию или нет. Если есть, то попавшему под напряжение человеку мало не покажется.

В интернете описан трагический случай, произошедший с мальчиком, захотевшим сделать уроки в вечернем саду. Он взял включенную в сеть настольную лампу с удлинителем и начал выносить ее из дома. Лампа была неисправна – находящийся под напряжением фазный провод касался корпуса лампы. Мальчик держал в руках находящийся под напряжением корпус лампы, но током его не било. Сухой деревянный пол мешал току вернуться к подстанции. Как только мальчик сошел с крыльца и наступил на землю, создалась замкнутая токовая цепь: трансформаторная подстанция -> фазный провод -> настольная лампа -> человек -> земля -> снова трансформаторная подстанция и мальчик был убит током. Трагедии могло не быть. Если бы лампа, удлинитель и проводка в доме были заземлены, то ток с корпуса лампы утекал бы через заземление, не причиняя вреда мальчику.

Если в доме нет возможности установить заземление, то хотя бы следует помнить что у тока не должно быть возможности возвратиться на подстанцию через землю. Только по специально предназначенному для этого нулевому проводу. Ни в коем случае нельзя одновременно касаться электроприборов и заземленных частей, таких как батареи, водопроводные трубы и т п, чтобы не дать току возможность пройти через вас в землю и вернуться к подстанции. Если в помещении сырой пол, то желательно чтобы на вас была обувь с непромокаемой подошвой, которая станет преградой между вами и проводящим полом, в случае если вы случайно попадете под напряжение.

Определение понятия

Если сказать кратко и простыми словами, то:

Заземление – это устройство, которое защищает человека от поражения электрическим током, если всё электрооборудование соединено с землей. В аварийной ситуации опасное напряжение «стекает» на землю.

Защита – основное назначение заземления. Оно заключается в подключении дополнительного, третьего заземляющего проводника в проводку, который соединен с таким устройством, как заземлитель. Он, в свою очередь, имеет хороший контакт с землей.

Заземление бывает рабочим и защитным по назначению. Рабочее нужно для нормального функционирования электроустановки, защитное нужно для обеспечения электробезопасности (предотвращения поражения электрическим током).

Обычно заземление (заземлитель) выглядит как три электрических прута вбитых в землю, на одинаковом расстоянии друг от друга, расположенных в углах равностороннего треугольника. Эти пруты соединены между собой металлической полосой. Вы могли видеть такие пруты около домов и сооружений.

Также вы могли заметить, что на стенах многих зданий внутри или снаружи закреплены металлические полосы, иногда выкрашенные желтыми и зелеными чередующимися полосами – это заземляющая шина, она тоже соединена с заземлителем. Заземляющая шина нужна для того, чтобы не тянуть от каждой электроустановки заземляющий провод.

Назначение защитного заземления

Уже из самого названия понятно, что цель заземления – это защита человека от поражения электрическим током. Где он (ток) может появиться? На всех металлических частях и корпусах различных электроприборов, которые работают от электричества. Но, скажите Вы, сейчас такие хорошие изоляционные материалы, высокие технологии и т. д. И будете правы. Но не стоит забывать и случайности, которые в нашей жизни происходят довольно часто.

Простой пример из нашего быта. Представьте обыкновенную небольшую духовку для приготовления курочки, тортиков, выпечки. Она имеет, как и многие бытовые приборы (холодильник, боллер, микроволновка, насос и т.д.) металлический корпус. Со временем изоляция на проводах может разрушиться, подплавиться или просто отгорит какой-нибудь провод. Причин много: длительное время эксплуатации, высокая температура, вибрация, заводской брак, нарушение правил эксплуатации прибора и многое другое.

Этот «голый провод», находящийся под напряжением  может случайно оказаться на металлическом корпусе, значит, он весь окажется под напряжением (корпус). Что может произойти в данном случае? Может быть короткое замыкание, и тогда автоматика просто отключит электричество. А может ничего не произойти, всё будет работать до тех пор, пока человек не затронет корпус духовки.

Во время прикосновения к металлической части (токопроводящей), человек получит электрический удар. Какой силы он будет, не знает никто. Здесь всё индивидуально и зависит от сотни факторов. Рассматривать их не будем (факторы), но любой удар током – это сильный стресс для организма, особенно для сердца. Благо, если всё закончится хорошо, а ведь бывают и смертельные случаи. Никого не хочу пугать и отказываться от электротехники, но статистика не умолима и показывает конкретные факты.

Защитное заземление

Итак, для чего делают заземление, думаю понятно. Не случайно в любой бытовой технике питающие провода выполнены трёхжильным проводом и вилка имеет заземляющую клемму. Кстати, требования к электропроводке, сейчас значительно изменились, и для питания любых приборов применяют только трёхжильный провод. Одним словом — наличие защитного заземления обязательно. Если раньше двух жил проводов (фаза и нуль) в электропроводке дома или квартиры было достаточно, то сейчас уже «такое безобразие» монтировать нельзя. Наличие «земли» обязательное и нужное требование. Даже светильники для бани имеют на клемнике заземляющий провод, подключенный к корпусу.

Требования к заземлению

После того как разобрались с тем, что является определением самого понятия заземления – можно перейти к тем категориям и нормам, которые вводятся действующими стандартами. Согласно ПУЭ к заземляющему устройству в первую очередь предъявляются следующие требования:

  • назначение ЗУ – эффективно отводить опасные токи в землю, для чего в их конструкции предусмотрен целый набор проводников и металлических прутьев;
  • заземлению подлежат все части электроустановки, включая металлические дверцы щитов;
  • суммарное переходное сопротивление контактов в системе заземления не должно превышать 4-30 Ом;
  • при ее обустройстве в распределенных нагрузках обязательно использование системы выравнивания потенциалов (ее назначение – устранить неравномерность распределения напряжений).

Качество его работы обеспечивается целым комплексом профилактических мероприятий и периодически организуемых испытаний.

Из чего состоит заземление

  1. Внешний контур заземления. Располагается за пределами помещений, непосредственно в грунте. Представляет собой пространственную конструкцию из электродов (заземлителей), соединенных между собой неразделимым проводником.
  2. Внутренний контур заземления. Токопроводящая шина, размещенная внутри здания. Охватывает периметр каждого помещения. К этому устройству подсоединяются все электроустановки. Вместо внутреннего контура может быть установлен щиток заземления.
  3. Заземляющие проводники. Соединительные линии, предназначенные для подключения электроустановок непосредственно к заземлителю, или внутреннему контуру заземления.

Рассмотри эти компоненты подробнее.

Внешний, или наружный контур

Монтаж контура заземления зависит от внешних условий. Прежде чем начать расчет, и выполнить проектный чертеж, необходимо знать параметры грунта, в котором будут установлены заземлители. Если вы сами строили дом, эти характеристики известны. В противном случае лучше вызвать геодезистов, для получения заключения по грунту.

Какие бывают грунты, и как они влияют на качество заземления? Примерное удельное сопротивление каждого типа грунта. Чем оно ниже, тем лучше проводимость.

  • Глина пластичная, торф = 20–30 Ωм·м
  • Суглинок пластичный, зольные грунты, пепел, классическая садовая земля = 30–40 Ом·м
  • Чернозем, глинистые сланцы, полутвердая глина = 50–60 Ом·м

Это лучшая среда для того, чтобы установить наружный контур заземления. Сопротивление растекания тока будет достаточно низким даже при малом содержании влаги. А в этих грунтах естественная влажность обычно выше среднего.

Полутвердый суглинок, смесь глины и песка, влажная супесь — 100–150 Ом·м

Сопротивление немного выше, но при нормальной влажности параметры заземления не выйдут за нормативы. Если в регионе установки установится продолжительная сухая погода, необходимо принимать меры к принудительному увлажнению мест установки заземлителей.

Глинистый гравий, супесок, влажный (постоянно) песок = 300–500 Ом·м

Гравий, скала, сухой песок – даже при высокой общей влажности, заземление в такой почве будет неэффективным. Для соблюдения нормативов, придется устанавливать глубинные заземлители.

Многие владельцы объектов, экономя «на спичках», просто не понимают, для чего нужен контур заземления. Его задача при соединении фазы с землей обеспечить максимальную величину тока короткого замыкания. Только в этом случае быстро сработают устройства защитного отключения. Этого невозможно достичь, если сопротивление растекания тока будет высоким.

Определившись с грунтом, вы сможете выбрать тип, и самое главное — размер заземлителей. Предварительный расчет параметров можно выполнить по формуле:

Расчет приведен для вертикально установленных заземлителей.

Расшифровка величин формулы:

  • R0 — полученное после вычисления сопротивление одного заземлителя (электрода) в омах.
  • Рэкв — удельное сопротивление грунта, см. информацию выше.
  • L — общая длина каждого электрода в контуре.
  • d — диаметр электрода (если сечение круглое).
  • Т — вычисленное расстояние от центра электрода до поверхности земли.

Задавая известные данные, а также меняя соотношение величин, вы должны добиться значения для одного электрода порядка 30 Ом.

Если установка вертикальных заземлителей невозможна (по причине качества грунта), можно рассчитать величину сопротивления горизонтальных заземлителей.

Поэтому лучше потратить больше времени на забивание вертикальных стержней, чем следить за барометром и влажностью воздуха.

И все же приводим формулу расчета горизонтальных заземлителей.

Соответственно, расшифровка дополнительных величин:

  • Rв — полученное после вычисления сопротивление одного заземлителя (электрода) в омах.
  • b — ширина электрода — заземлителя.
  • ψ — коэффициент, зависящий от погодного сезона. Данные можно взять в таблице:

ɳГ — так называемый коэффициент спроса горизонтально расположенных электродов. Не вдаваясь в подробности, получаем цифры из таблицы на иллюстрации:

Предварительный расчет сопротивления необходим не только для правильного планирования закупок материала: хотя будет обидно, если вам не хватит для завершения работ, пары метров электрода, а до магазина несколько десятков километров. Более-менее аккуратно оформленный план, расчеты и чертежи, пригодятся для решения бюрократических вопросов: при подписании документов о приемке объекта, или составлении ТУ с компанией энергосбыта.

Разумеется, никакой инженер не подпишет бумаги только на основании пусть и красиво исполненных чертежей. Будут произведены замеры сопротивления растекания.

Далее расскажем о том, как добиться правильных характеристик внешнего контура заземления.

Проводник

Особых требований к проводящему контуру (от электроустановки до контура) нет. Самое главное – это прочность металлического элемента, который способен выдержать и механические нагрузки, и негативное воздействие влаги и температур. Поэтому чаще всего в качестве проводника используются стальные ленты толщиною не меньше 5 мм, тросы сечением не меньше 12 мм, арматура диаметром 10-12 мм.

Что касается частного домостроения, то в них можно использовать даже проволоку диаметром 6 мм ввиду того, что электрические нагрузки на такой проводник будут незначительны. Но¸ как считают специалисты, в этом деле лучше перестраховаться. Поэтому рекомендуется использовать стальную ленту сечением 5×30 мм.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector